Unsupervised Symbolization of Signal Time Series for Extraction of the Embedded Information

نویسندگان

  • Yue Li
  • Asok Ray
چکیده

This paper formulates an unsupervised algorithm for symbolization of signal time series to capture the embedded dynamic behavior. The key idea is to convert time series of the digital signal into a string of (spatially discrete) symbols from which the embedded dynamic information can be extracted in an unsupervised manner (i.e., no requirement for labeling of time series). The main challenges here are: (1) definition of the symbol assignment for the time series; (2) identification of the partitioning segment locations in the signal space of time series; and (3) construction of probabilistic finite-state automata (PFSA) from the symbol strings that contain temporal patterns. The reported work addresses these challenges by maximizing the mutual information measures between symbol strings and PFSA states. The proposed symbolization method has been validated by numerical simulation as well as by experimentation in a laboratory environment. Performance of the proposed algorithm has been compared to that of two commonly used algorithms of time series partitioning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

A Novel Blind Watermarking of ECG Signals on Medical Images Using EZW Algorithm

Introduction:In this study, ECG signals have been embedded into medical images to create a novel blind watermarking method. The embedding is done when the original image is compressed using the EZW algorithm. The extraction process is performed at the decompression time of the watermarked image. Materials and Methods: The multi-resolution watermarking with a secret key algorithm developed in th...

متن کامل

بهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگی‌های استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز

The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017